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Abstract—Feature extraction and feature selection are crucial
phases in the process of affective modeling. Both, however,
incorporate substantial limitations that hinder the development
of reliable and accurate models of affect. For the purpose of
modeling affect manifested through physiology, this paper builds
on recent advances in machine learning with deep learning
(DL) approaches. The efficiency of DL algorithms that train
artificial neural network models is tested and compared against
standard feature extraction and selection approaches followed
in the literature. Results on a game data corpus — containing
players’ physiological signals (i.e. skin conductance and blood
volume pulse) and subjective self-reports of affect — reveal that
DL outperforms manual ad-hoc feature extraction as it yields
significantly more accurate affective models. Moreover, it appears
that DL meets and even outperforms affective models that are
boosted by automatic feature selection, for several of the scenarios
examined. As the DL method is generic and applicable to any
affective modeling task, the key findings of the paper suggest
that ad-hoc feature extraction and selection — to a lesser degree
— could be bypassed.

Index Terms—Deep learning, affective modeling, auto-
encoders, convolutional neural networks, preference learning,
skin conductance, blood volume pulse, signal fusion, games

I. INTRODUCTION

MORE than 15 years after the early studies in Affective
Computing (AC), [1] the problem of detecting and

modeling emotions in the context of human-computer inter-
action (HCI) remains complex and largely unexplored. The
detection and modeling of emotion is, primarily, the study
and use of artificial intelligence (AI) techniques for the
construction of computational models of emotion. The key
challenges one faces when attempting to model emotion [2]
are inherent in the vague definitions and fuzzy boundaries
of emotion, and in the modeling methodology followed. In
this context, open research questions are still present in all
key components of the modeling process. These include, first,
the appropriateness of the modeling tool employed to map
emotional manifestations and responses to annotated affective
states; second, the processing of signals that express these
manifestations (i.e. model input); and third, the way affective
annotation (i.e. model output) is handled. This paper touches
upon all three key components of an affective model (i.e.
input, model, output) and introduces the use of deep learning
(DL) [3], [4], [5] methodologies for affective modeling from
multiple physiological signals.
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Traditionally in AC research, behavioral and bodily res-
ponses to stimuli are collected and used as the affective model
input. The input can be of three main types: a) behavioral res-
ponses to emotional stimuli expressed through an interactive
application (e.g. data obtained from a log of actions performed
in a game); b) objective data collected as bodily responses to
stimuli, such as physiological signals and facial expressions;
and c) the context of the interaction. Before these data streams
are fed into the computational model, an automatic or ad-hoc
feature extraction procedure is employed to derive appropriate
signal attributes (e.g. average skin conductance) that will feed
the model. It is also common to introduce an automatic or a
semi-automatic feature selection procedure that picks the most
appropriate of the features extracted.

While the phases of feature extraction and feature selection
are beneficial for affective modeling, they inherit a number
of critical limitations that make their use cumbersome in
highly complex multimodal input spaces. First, manual feature
extraction limits the creativity of attribute design to the expert
(i.e. the AC researcher) resulting in potentially inappropriate
affect detectors that might not be able to capture the man-
ifestations of the affect embedded in the raw input signals.
Second, both feature extraction and feature selection — to
a larger degree — are computationally expensive phases. In
particular, the computational cost of feature selection may
increase combinatorially (quadratically, in the greedy case)
with respect to the number of features considered [6]. In
general, there is no guarantee that any search algorithm is
able to converge to optimal feature sets for the model; even
exhaustive search may be approximate, since models are often
trained with non-deterministic algorithms.

Our hypothesis is that the use of non-linear unsupervised
and supervised learning methods relying on the principles
of DL [3], [4] can eliminate the limitations of the current
feature extraction and feature selection practices in affective
modeling. We test the hypothesis that DL could construct
feature extractors that are more appropriate than selected ad-
hoc features picked via automatic selection. Learning within
deep artificial neural network (ANN) architectures has proven
to be a powerful machine learning approach for a number
of benchmark problems and domains, including image and
speech recognition [7], [8]. DL allows the automation of fea-
ture extraction (and feature selection, in part) without compro-
mising on the accuracy of the obtained computational models
and the physical meaning of the data attributes extracted [9].
Using deep learning we were able to extract meaningful mul-
timodal data attributes beyond manual ad-hoc feature design.
These learned attributes led to more accurate affective models
and, at the same time, potentially save computational resources
by bypassing the computationally expensive feature selection
phase. Most importantly, with the use of DL we gain simplicity
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as multiple signals can be fused and fed directly — with
limited preprocessing — to the model for training.

Other common automatic feature extraction techniques
within AC are principal component analysis (PCA) and Fisher
projection. However they are typically applied to a set of
features extracted a priori [10] while we apply DL directly
to the raw data signals. Moreover, DL techniques can operate
with any signal type and are not restricted to discrete signals
as, for example, sequential data mining techniques are [11].
Finally, compared to dynamic affect modeling approaches such
as Hidden Markov Models and Dynamic Bayesian Networks,
DL models are advantageous with respect to their ability
to reduce signal resolution across the several layers of their
architectures.

This paper focuses on developing DL models of affect
using data which are annotated in a ranking format (pairwise
preferences). We emphasize the benefits of preference-based
(or ranking-based) annotations for emotion (e.g. X is more
frustrating than Y) as opposed to rating-based annotation
[12] (such as the self-assessment manikins [13], a tool to
rate levels of arousal and valence in discrete or continuous
scales [14]) and introduce the use of DL algorithms for
preference learning, namely, preference deep learning (PDL).
In this paper, the PDL algorithm proposed is tested on emo-
tional manifestations of relaxation, anxiety, excitement, and
fun, embedded in physiological signals (i.e. skin conductance
and blood volume pulse) derived from a game-based user study
of 36 participants. The study compares DL against ad-hoc
feature extraction on physiological signals, used broadly in
the AC literature, showing that DL yields models of equal or
significantly higher accuracy when a single signal is used as
model input. When the skin conductance and blood volume
pulse signals are fused, DL outperforms standard feature
extraction across all affective states examined. The supremacy
of DL is maintained even when automatic feature selection
is employed to improve models built on ad-hoc features; in
several affective states the performance of models built on
automatically selected ad-hoc features does not surpass or
reach the corresponding accuracy of the PDL approach.

This paper advances the state-of-the-art in affective
modeling in several ways. First, to the best of the authors’
knowledge, this is the first time deep learning is introduced
to the domain of psychophysiology, yielding efficient com-
putational models of affect. Second, the paper shows the
strength of the method when applied to the fusion of different
physiological signals. Third, the paper introduces PDL, i.e. the
use of deep ANN architectures trained on ranked (pairwise
preference) annotations of affect. Finally, the key findings
of the paper show the potential of DL as a mechanism
for eliminating manual feature extraction and even, in some
occasions, bypassing automatic feature selection for affective
modeling.

II. COMPUTATIONAL MODELING OF AFFECT

Emotions and affect are mental and bodily processes that
can be inferred by a human observer from a combination
of contextual, behavioral and physiological cues. Part of the

complexity of affect modeling emerges from the challenges of
finding objective and measurable signals that carry affective
information (e.g. body posture, speech and skin conductance)
and designing methodologies to collect and label emotional
experiences effectively (e.g. induce specific emotions by ex-
posing participants to a set of images). Although this paper
is only concerned with computational aspects of creating
physiological detectors of affect, the signals and the affective
target values collected shape the modeling task and, thus, influ-
ence the efficacy and applicability of dissimilar computational
methods. Consequently, this section gives an overview of
the field beyond the input modalities and emotion annotation
protocols examined in our case study. Furthermore, the studies
surveyed are representative of the two principal applications
of AI for affect modeling and cover the two key research
pillars of this paper: 1) defining feature sets to extract relevant
bits of information from objective data signals (i.e. for feature
extraction), and 2) creating models that map a feature set into
predicted affective states (i.e. for training models of affect).

A. Feature Extraction

In the context of affect detection, we refer to feature extrac-
tion as the process of transforming the raw signals captured by
the hardware (e.g. a skin conductance sensor, a microphone,
or a camera) into a set of inputs suitable for a computational
predictor of affect. The most common features extracted from
unidimensional continuous signals — i.e. temporal sequences
of real values such as blood volume pulse, accelerometer data,
or speech — are simple statistical features, such as average and
standard deviation values, calculated on the time or frequency
domains of the raw or the normalized signals (see [15],
[16] among others). More complex feature extractors inspired
by signal processing methods have also been proposed by
several authors. For instance, Giakoumis et al. [17] proposed
features extracted from physiological signals using Legendre
and Krawtchouk polynomials while Yannakakis and Hallam
[18] used the approximate entropy [19] and the parameters of
linear, quadratic and exponential regression models fitted to a
heart rate signal. The focus of this paper is on DL methods
that can automatically derive feature extractors from the raw
data, as opposed to a fixed set of hand-crafted extractors that
represent pre-designed statistical features of the signals.

Unidimensional symbolic or discrete signals — i.e. temporal
sequences of discrete labels, typically events such as clicking
a mouse button or blinking an eye — are usually transformed
with ad-hoc statistical feature extractors such as counts,
similarly to continuous signals. Distinctively, Martı́nez and
Yannakakis [11] used frequent sequence mining methods [20]
to find frequent patterns across different discrete modalities,
namely gameplay events and discrete physiological events.
The count of each pattern was then used as an input feature
to an affect detector. This methodology is only applicable
to discrete signals: continuous signals must be discretized,
which involves a loss of information. To this end, the key
advantage of the DL methodology proposed in this paper is
that it can handle both discrete and continuous signals; a
lossless transformation can convert a discrete signal into a
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binary continuous signal, which can potentially be fed into a
deep network — DL has been successfully applied to classify
binary images, e.g. [21].

Affect recognition based on signals with more than one
dimension typically boils down to affect recognition from
images or videos of body movements, posture or facial
expressions. In most studies, a series of relevant points of
the face or body are first detected (e.g. right mouth corner
and right elbow) and tracked along frames. Second, the
tracked points are aggregated into discrete Action Units [22],
gestures [23] (e.g. lip stretch or head nod) or continuous
statistical features (e.g. body contraction index), which are
then used to predict the affective state of the user [24]. Both
above-mentioned feature extraction steps are, by definition,
supervised learning problems as the points to be tracked and
action units to be identified have been defined a priori. While
these problems have been investigated extensively under the
name of facial expression or gesture recognition, we will
not survey them broadly as this paper focuses on methods
for automatically discovering new or unknown features in an
unsupervised manner.

Deep neural network architectures such as convolutional
neural networks (CNNs), as a popular technique for object
recognition in images [25], have also been applied for facial
expression recognition. In [26], CNNs were used to detect
predefined features such as eyes and mouth which later were
used to detect smiles. Contrary to our work, in that study
each of the layers of the CNN was trained independently
using backpropagation, i.e. labeled data was available for
training each level. More recently, Rifai et al. [27] successfully
applied a variant of auto-encoders [21] and convolutional
networks, namely Contractive Convolutional Neural Networks,
to learn features from images of faces and predict the displayed
emotion, breaking the previous state-of-the-art on the Toronto
Face Database [28]. The key differences of this paper with
that study reside in the nature of the dataset and the method
used. While Rifai et al. [27] used a large dataset (over 100, 000
samples; 4, 178 of them were labeled with an emotion class)
of static images displaying posed emotions, we use a small
dataset (224 samples, labeled with pairwise orders) with a
set of physiological time-series recorded along an emotional
experience. The reduced size of our dataset (which is of the
same magnitude as datasets used in related psychophysiologi-
cal studies — e.g. [29], [30]) does not allow the extraction of
large feature sets (e.g. 9, 000 features in [27]), which would
lead to affect models of poor generalizability. The nature of
our preference labels also calls for a modified CNN training
algorithm for affective preference learning which is introduced
in this paper. Furthermore, while the use of CNNs to process
images is extensive, to the best of the authors knowledge,
CNNs have not been applied before to process (or as a means
to fuse) physiological signals.

As in many other machine learning applications, in affect
detection it is common to apply dimensionality reduction
techniques to the complete set of features extracted. A wide
variety of feature selection (FS) methods have been used
in the literature including sequential forward [31], sequential
floating forward [10], sequential backwards [32], n-best indi-

viduals [33], perceptron [33] and genetic [34] feature selection.
Fisher projection and Principal Component Analysis (PCA)
have been also widely used as dimensionality reducers on
different modalities of AC signals (e.g. see [10] among others).
An auto-encoder can be viewed as a non-linear generalization
of PCA [8]; however, while PCA has been applied in AC
to transpose sets of manually extracted features into low-
dimensional spaces, in this paper auto-encoders are used to
train unsupervised CNNs to transpose subsets of the raw
input signals into a learned set of features. We expect that
information relevant for prediction can be extracted more
effectively using dimensionality reduction methods directly on
the raw physiological signals than on a set of designer-selected
extracted features.

B. Training Models of Affect
The selection of a method to create a model that maps

a given set of features to predictions of affective variables
is strongly influenced by the dynamic aspect of the features
(stationary or sequential) and the format in which training
examples are given (continuous values, class labels or or-
dinal labels). A vast set of off-the-shelf machine learning
(ML) methods have been applied to create models of affect
based on stationary features, irrespective of the specific emo-
tions and modalities involved. These include Linear Discrimi-
nant Analysis [35], Multi-layer Perceptrons [32], K-Nearest
Neighbours [36], Support Vector Machines [37], Decision
Trees [38], Bayesian Networks [39], Gaussian Processes [29]
and Fuzzy-rules [40]. On the other hand, Hidden Markov
Models [41], Dynamic Bayesian Networks [42] and Recurrent
Neural Networks [43] have been applied for constructing affect
detectors that rely on features which change dynamically. In
the approach presented here, deep neural network architectures
reduce hierarchically the resolution of temporal signals down
to a set of features that can be fed to simple stateless models
eliminating the need for complex sequential predictors.

In all the above-mentioned studies, the prediction targets
are either class labels or continuous values. Class labels are
assigned either using an induction protocol (e.g. participants
are asked to self-elicit an emotion [36], presented with stories
to evoke a specific emotion [44]) or via rating- or rank-based
questionnaires given to users experiencing the emotion (self-
reports) or experts (third-person reports). If ratings are used,
they can be binned into discrete or binary classes (e.g. on a
scale from 1 to 5 measuring stress, values above or below
3 correspond to the user at stress or not at all, respectively
[45]) or used as target values for supervised learning (e.g.
two experts rate the amount of sadness of a facial expression
and the average value is used as the sadness intensity [46]).
Alternatively, if ranks are used, the problem of affective
modeling becomes one of preference learning. In this paper
we use object ranking methods — a subset of preference
learning algorithms [47], [48] — which train computational
models using partial orders among the training samples. These
methods allow us to avoid binning together ordinal labels and
to work with comparative questionnaires, which provide more
reliable self-report data compared to ratings, as they generate
less inconsistency and order effects [12].
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Object ranking methods and comparative (rank) question-
naires have been scarcely explored in the AC literature,
despite their well-known advantages. For example, Tognetti et
al. [49] applied Linear Discriminant Analysis to learn models
of preferences over game experiences based on physiological
statistical features and comparative pairwise self-reports (i.e.
participants played pairs of games and ranked games according
to preference). On the same basis, Yannakakis et al. [50], [51]
and Martı́nez et al. [34], [33] trained single and multiple layer
perceptrons via genetic algorithms (i.e. neuroevolutionary
preference learning) to learn models for several affective and
cognitive states (e.g. fun, challenge and frustration) using
physiological and behavioral data, and pairwise self-reports.
In this paper we introduce a deep learning methodology for
data given in a ranked format (i.e. Preference Deep Learning)
for the purpose of modeling affect.

III. DEEP ARTIFICIAL NEURAL NETWORKS

We investigate an effective method of learning models that
map signals of user behavior to predictions of affective states.
To bypass the manual ad-hoc feature extraction stage, we use
a deep model composed from (a) a multi-layer convolutional
neural network (CNN) that transforms the raw signals into
a reduced set of features that feed (b) a single-layer per-
ceptron (SLP) which predicts affective states (see Fig. 1).
Our hypothesis is that the automation of feature extraction
via deep learning will yield physiological affect detectors of
higher predictive power, which, in turn, will deliver affective
models of higher accuracy. The advantages of deep learning
techniques mentioned in the introduction of the paper have
led to very promising results in computer vision as they
have outperformed other state-of-the-art methods [52], [53].
Furthermore, convolutional networks have been successfully
applied to dissimilar temporal datasets (e.g. [54], [25]) in-
cluding electroencephalogram (EEG) signals [55] for seizure
prediction.

To train the convolutional neural network (see Section III-A)
we use denoising auto-encoders [56], an unsupervised learning
method to train filters or feature extractors which transform the
information of the input signal (see Section III-B) in order to
capture a distributed representation of its leading factors of
variation, but without the linearity assumption of PCA. The
SLP is then trained using backpropagation [57] to map the
outputs of the CNN to the given affective target values. In
the case study examined in this paper, target values are given
as pairwise comparisons (partial orders of length 2) making
error functions commonly used with gradient descent methods,
such as the difference of squared errors or cross-entropy,
unsuitable for the task. For that purpose, we use the rank
margin error function for preference data [58], [59] as detailed
in Section III-C below. Additionally, we apply an automatic
feature selection method to reduce the dimensionality of the
feature space improving the prediction accuracy of the models
trained (see Section III-D).

A. Convolutional Neural Networks
Convolutional or time-delay neural networks [25] are hier-

archical models that alternate convolutional and pooling layers

Fig. 2. Convolutional layer. The neurons in a convolutional layer take as
input a patch on the input signal x. Each of the neurons calculates a weighted
sum of the inputs (x ·w), adds a bias parameter θ and applies an activation
function s(x). The output of each neuron contributes to a different feature
map. In order to find patterns that are insensitive to the baseline level of
the input signal, x is normalized with mean equal to 0. In this example, the
convolutional layer contains 3 neurons with 20 inputs each.

(see Fig. 1) in order to process large input spaces in which
a spatial or temporal relation among the inputs exists (e.g.
images, speech or physiological signals).

Convolutional layers contain a set of neurons that detect
different patterns on a patch of the input (e.g. a time window
in a time-series or part of an image). The inputs of each neuron
(namely receptive field) determine the size of the patch. Each
neuron contains a number of trainable weights equal to the
number of its inputs and an additional bias parameter (also
trainable); the output is calculated by applying an activation
function (e.g. logistic sigmoid) to the weighted sum of the in-
puts plus the bias (see Fig. 2). Each neuron scans sequentially
the input, assessing at each patch location the similarity to
the pattern encoded on the weights. The consecutive outputs
generated at every location of the input assemble a feature
map (see Fig. 1). The output of the convolutional layer is
the set of feature maps resulting from convolving each of the
neurons across the input. Note that the convolution of each
neuron produces the same number of outputs as the number
of samples in the input signal (e.g. the sequence length) minus
the size of the patch (i.e. the size of the receptive field of the
neuron), plus 1 (see Fig. 1).
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Fig. 1. Example of structure of a deep ANN architecture. The architecture contains: (a) a convolutional neural network (CNN) with two convolutional and
two pooling layers, and (b) a single-layer perceptron (SLP) predictor. In the illustrated example the first convolutional layer (3 neurons and path length of
20 samples) processes a skin conductance signal which is propagated forward through an average-pooling layer (window length of 3 samples). A second
convolutional layer (3 neurons and patch length of 11 samples) processes the subsampled feature maps and the resulting feature maps feed the second
average-pooling layer (window length of 6 samples). The final subsampled feature maps form the output of the CNN which provides a number of extracted
(learned) features which feed the input of the SLP predictor.
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Fig. 3. Pooling layer. The input feature maps are subsampled independently
using a pooling function over non-overlapping windows, resulting in the same
number of feature maps with a lower temporal resolution. In this example, an
average-pooling layer with a window length of 3 subsamples 3 feature maps.

As soon as feature maps have been generated, a pooling
layer aggregates consecutive values of the feature maps re-
sulting from the previous convolutional layer, reducing their
resolution with a pooling function (see Fig. 3). The maximum
or average values are the two most commonly used pooling
functions providing max-pooling and average-pooling layers,
respectively. This aggregation is typically done inside each
feature map, so that the output of a pooling layer presents
the same number of feature maps as its input but at a lower
resolution (see Fig. 1).

B. Auto-encoders

An auto-encoder (AE) [60], [8], [21] is a model that
transforms an input space into a new distributed representation
(extracted features) by applying a deterministic parametrized
function (e.g. single layer of logistic neurons) called the
encoder (see Fig. 4). The AE also learns how to map back the
output of the encoder into the input space, with a parametrized
decoder, so as to have small reconstruction error on the training
examples, i.e. the original and corresponding decoded inputs
are similar. However, constraints on the architecture or the
form of the training criterion prevent the auto-encoder from
simply learning the identity function everywhere. Instead, it
will learn to have small reconstruction error on the training
examples (and where it generalizes) and high reconstruction
error elsewhere. Regularized auto-encoders are linked to den-
sity estimation in several ways [56], [61]; see [62] for a recent
review of regularized auto-encoders. In this paper, the encoder
weights (used to obtain the output representation) are also
used to reconstruct the inputs (tied weights). By defining the
reconstruction error as the sum of squared differences between
the inputs and the reconstructed inputs, we can use a gradient
descent method such as backpropagation to train the weights of
the model. A denoising auto-encoder (DA) [56] is a variant of
the basic model that during training adds a variable amount of

Fig. 4. Structure of an auto-encoder. The encoder generates the learned
representation (extracted features) from the input signals. During training the
output representation is fed to a decoder that attempts to reconstruct the input.

noise to the inputs before computing the outputs. The resulting
training objective is to reconstruct the original uncorrupted
inputs, i.e., one minimizes the discrepancy between the outputs
of the decoder and the original uncorrupted inputs.

Auto-encoders are among several unsupervised learning
techniques that have provided remarkable improvements to
gradient-descent supervised learning [4], especially when the
number of labeled examples is small or in transfer settings
[62]. ANNs that are pretrained using these techniques usually
converge to more robust and accurate solutions than ANNs
with randomly sampled initial weights. In this paper, we use
a DA method known as Stacked Convolutional Auto-encoders
[63] to train all convolutional layers of our CNNs from bottom
to top. We trained the filters of each convolutional layer patch-
wise, i.e., by considering the input at each position (one patch)
in the sequence as one example. This allows faster training
than training convolutionally, but may yield translated versions
of the same filter.

C. Preference Deep Learning

The outputs of a trained CNN define a number of learned
features extracted from the input signal. These, in turn, may
feed any function approximator or classifier that attempts to
find a mapping between the input signal and a target output
(i.e. affective state in our case). In this paper, we train a single-
layer perceptron to learn to predict the affective state of a user
based on the learned features of her physiology (see Fig 1).
To this aim, we use backpropagation [57], which optimizes
an error function iteratively across a number of epochs by
adjusting the weights of the SLP proportionally to the gradient
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of the error with respect to the current value of the weights
and current data samples.

We use the Rank Margin error function [64] that given two
data samples {xP,xN} such that xP is preferred over (or
should be greater than) xN is calculated as follows:

E(xP,xN) = max{0, 1− (f(xP)− f(xN))} (1)

where f(xP) and f(xN) represent the outputs of the SLP
for the preferred and non-preferred sample, respectively.
This function decreases linearly as the difference between
the predicted value for preferred and non-preferred samples
increases. The function becomes zero if this difference is
greater than 1, i.e., there is enough margin to separate the
preferred “positive example” score f(xP) from the non-
preferred “negative example” score f(xN). By minimizing
this function, the neural network is driven towards learning
outputs separated at least by one unit of distance between
the preferred and non preferred data sample. In each training
epoch, for every pairwise preference in the training dataset,
the output of the neural network is computed for the two data
samples in the preference (preferred and non preferred) and
the rank-margin error is backpropagated through the network
in order to obtain the gradient required to update the weights.
Note that while all layers of the deep architecture could be
trained (including supervised fine-tuning of the CNNs), due
to the small number of labeled examples available here, the
Preference Deep Learning algorithm is constrained to the last
layer (i.e. SLP) of the network in order to avoid overfitting.

D. Automatic Feature Selection

Automatic feature selection (FS) is an essential process to-
wards picking those features (deep learned or ad-hoc extracted)
that are appropriate for predicting the examined affective
states. In this paper, we use Sequential Forward Feature Selec-
tion (SFS) for its low computational effort and demonstrated
good performance compared to more advanced, nevertheless
time consuming, feature subset selection algorithms such as
the genetic-based FS [34]. While a number of other FS
algorithms are available for comparison, in this paper we focus
on the comparative benefits of learned physiological detectors
over ad-hoc designed features. The impact of FS on model
performance is further discussed in Section VI.

In brief, SFS is a bottom-up search procedure where one
feature is added at a time to the current feature set (see e.g.
[48]). The feature to be added is selected from the subset of
the remaining features such that the new feature set generates
the maximum value of the performance function over all
candidate features for addition. Since we are interested in the
minimal feature subset that yields the highest performance, we
terminate selection procedure when an added feature yields
equal or lower validation performance to the performance
obtained without it. The performance of a feature set selected
by automatic FS is measured through the average classification
accuracy of the model in three independent runs using 3-fold
cross-validation. In the experiments presented in this paper,
the SFS algorithm selects the input feature set for the SLP
model.

IV. THE MAZE-BALL DATASET

The dataset used to evaluate the proposed methodology
was gathered during an experimental game survey where 36
participants played four pairs of different variants of the
same video-game. The test-bed game named Maze-Ball is
a 3D prey/predator game that features a ball inside a maze
controlled by the arrow keys. The goal of the player is to
maximize her score in 90 seconds by collecting a number
of pellets scattered in the maze while avoiding enemies that
wander around. Eight different game variants were presented
to the players. The games were different with respect to
the virtual camera profile used, which determined how the
virtual world was presented on screen. We expected that
different camera profiles would induce different experiences
and affective states, which would, in turn, reflect on the phys-
iological state of the players, making it possible to predict the
players’ affective self-reported preferences using information
extracted from their physiology.

Blood volume pulse (BVP) and skin conductance (SC) were
recorded at 31.25 Hz during each game session. The players
filled in a 4-alternative forced choice questionnaire after com-
pleting a pair of game variants reporting whether the first or
the second game of the pair (i.e. pairwise preference) felt more
anxious, exciting, frustrating, fun and relaxing, with options
that include equally or none at all [33]. While three additional
labels were collected in the original experiment (boredom,
challenge and frustration), we focus only on affective states or
states that are implicitly linked to affective experiences, such
as fun (thereby, removing the cognitive state of challenge), and
report only results for states in which prediction accuracies of
over 70% were achieved in at least one of the input feature sets
examined (thereby, removing frustration). Finally, boredom
was removed due to the small number of clear preferences
available (i.e. most participants reported not feeling bored
during any of the games). The details of the Maze-Ball game
design and the experimental protocol followed can be found
in [33], [34].

A. Ad-Hoc Extraction of Statistical Features

This section lists the statistical features extracted from
the two physiological signals monitored. Some features are
extracted for both signals while some are signal-dependent as
seen in the list below. The choice of those specific statistical
features is made in order to cover a fair amount of possible
BVP and SC signal dynamics (tonic and phasic) proposed in
the majority of previous studies in the field of psychophysiol-
ogy (e.g. see [15], [65], [51] among many).

• Both signals (α ∈ {BV P, SC}): Average E{α}, stan-
dard deviation σ{α}, maximum max{α}, minimum
min{α}, the difference between maximum and minimum
signal recording Dα = max{α} −min{α}, time when
maximum α occurred tmax{α}, time when minimum α
occurred tmin{α} and the difference Dh

t = tmax{α} −
tmin{α}; autocorrelation (lag equals 1) of the signal ρα1
and mean of the absolute values of the first and second
differences of the signal [15] (δα|1| and δα|2| respectively).
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• BVP: Average inter-beat amplitude E{IBAmp}; given
the inter-beat time intervals (RR intervals) of the signal,
the following Heart Rate Variability (HRV) parameters
were computed: the standard deviation of RR intervals
σ{RR}, the fraction of RR intervals that differ by more
than 50 msec from the previous RR interval pRR50 and
the root-mean-square of successive differences of RR
intervals RMSRR [65].

• SC: Initial, SCin, and last, SClast, SC recording, the
difference between initial and final SC recording DSC

l−i =
SClast−SCin and Pearson’s correlation coefficient RSC
between raw SC recordings and the time t at which data
were recorded

V. EXPERIMENTS

To test the efficacy of DL on constructing accurate models
of affect we pretrained several convolutional neural networks
— using denoising auto-encoders — to extract features for
each of the physiological signals and across all reported
affective states in the dataset. The topologies of the networks
were selected after preliminary experiments with 1- and 2-
layer CNNs and trained using the complete unlabeled dataset.
In all experiments reported in this paper the final number of
features pooled from the CNNs is 15, to match the number
of ad-hoc extracted statistical features (see Section IV-A).
Although a larger number of pooled features could potentially
yield higher prediction accuracies, we restricted the size to 15
to ensure a fair comparison against the accuracies yielded by
the ad-hoc extracted features.

The input signals are not normalized using global, baseline
or subject-dependent constants; instead, the first convolutional
layer of every CNN subtracts the mean value within each
patch presented, resulting in patches with a zero mean value
inside the patch, making learned features that are only sensitive
to variation within the desired time window (patch) and
insensitive to the baseline level (see Fig. 2). As for statistical
features, we apply z-transformation to the complete dataset:
the mean and the standard deviation value of each feature in
the dataset are 0 and 1, respectively. Independently of model
input, the use of preference learning models — which are
trained and evaluated using within-participant differences —
automatically minimizes the effects of between-participants
physiological differences (as noted in [33], [12] among other
studies).

We present a comparison between the prediction accuracy
of several SLPs trained either on the learned features of the
CNNs or on the ad-hoc designed statistical features. The
affective models are trained with and without automatic feature
selection and compared. This section presents the key findings
derived from the SC (Section V-A) and the BVP (Section V-B)
signals and concludes with the analysis of the fusion of the
two physiological signals (Section V-C). All the experiments
presented here run for 10 times and the average (and stan-
dard error) of the resulting models’ prediction accuracies are
reported. The prediction accuracy of the models is calculated
as the average 3-fold cross-validation (CV) accuracy (average
percentage of correctly classified pairs on each fold). While
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Fig. 5. Learned features of the best-performing convolutional neural
networks. Lines are plotted connecting the values of consecutive connection
weights for each neuron Nx. The x axis displays the time stamp (in seconds)
of the samples connected to each weight within the input patch.

more folds in cross-validation (e.g. 10) or other validation
methods such as leave-one-out cross-validation are possible,
we considered the 3-fold CV as appropriate for testing the
generalizability of the trained ANNs given the relatively small
size of (and the high across-subject variation existent in) this
dataset.

A. Skin Conductance

The focus of the paper is on the effectiveness of DL
for affective modeling. While the topology of the CNNs
can be critical for the performance of the model, the ex-
haustive empirical validation of all possible CNN topologies
and parameter sets is out of the scope of this paper. For
this purpose — and also due to space considerations —
we have systematically tested critical parameters of CNNs
(e.g. the patch length, the number of layers, and the number
of neurons), we have fixed a number of CNN parameters
(e.g. pooling window length) based on suggestions from the
literature and we discuss results from representative CNN
architectures. In particular, for the skin conductance signal
we present results on two pretrained CNNs. The first, labeled
CNNSC

20×11, contains two convolutional layers with 5 logistic
neurons per patch location at each layer, as well as average-
pooling over non-overlapping windows of size 3. Each of the
neurons in the first and second convolutional layer has 20
and 11 inputs, respectively. The second network (labeled as
CNNSC

80 ), contains one convolutional layer with 5 logistic
neurons of 80 inputs each, at each patch location.

Both CNNs examined here are selected based on a number
of criteria. The number of inputs of the first convolutional layer
of the two CNNs considered were selected to extract features
at different time resolutions (20 and 80 inputs corresponding
to 12.8 and 51.2 seconds, respectively) and, thereby, giving
an indication of the impact the time resolution might have on
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performance. Extensive experiments with smaller and larger
time windows did not seem to affect the model’s prediction
accuracy. The small window on the intermediate pooling layer
was chosen to minimize the amount of information lost from
the feature maps while the number of inputs to the neurons
in the next layer was adjusted to cover about a third of
the pooled feature maps. Finally, we selected 5 neurons in
the first convolutional layer as a good compromise between
expressivity and dissimilarity among the features learned: a
low number of neurons derived features with low expressivity
while a large number of neurons generally resulted in features
being very similar.

Both topologies are built on top of an average-pooling layer
with a window length of 20 samples and are topped up with
an average-pooling layer that pools 3 outputs per neuron.
Although SC is usually sampled at high frequencies (e.g.
256 Hz), we believe that the most affect-relevant information
contained in the signal can be found at a lower time resolutions
as even rapid arousal changes (i.e. a phasic change of SC)
can be captured with a lower resolution and at a lower
computational cost [66], [33]. For that purpose, the selection of
this initial pooling stage aims to facilitate feature learning at a
resolution of 1.56 Hz. Moreover, experiments with dissimilar
pooling layers showed that features extracted on higher SC
resolutions do not necessarily yield models of higher accuracy.
The selection of 5 neurons for the last convolutional layer and
the following pooling layer was made to achieve the exact
number of ad-hoc statistical features of SC (i.e. 15).

1) Deep Learned Features: Figure 5(a) depicts the values
of the 80 connection weights of the five neurons in the
convolutional layer of the CNNSC

80 which cover 51.2 seconds
of the SC signal (0.64 seconds per weight) on each evaluation.
The first neuron (N1) outputs a maximal value for areas of the
SC signal in which a long decay is followed by 10 seconds
of an incremental trend and a final decay. The second neuron
(N2) shows a similar pattern but the increment is detected
earlier in the time window and the follow-up decay is longer. A
high output of these neurons would suggest that a change in the
experience elicited a heightened level of arousal that decayed
naturally seconds after. The forth neuron (N4) in contrast,
detects a second incremental trend in the signal that elevates
the SC level even further. The fifth neuron (N5) also detects
two increments but several seconds further apart. Finally, the
third neuron (N3) detects three consecutive SC increments.
These last three neurons could detect changes on the level of
arousal caused by consecutive stimuli presented few seconds
apart. Overall, this convolutional layer captures long and slow
changes (10 seconds or more) of skin conductance. These local
patterns cannot be modeled with the same precision using
standard statistical features related to variation (such as stan-
dard deviation and average first/second absolute differences),
which further suggests that dissimilar aspects of the signal are
extracted by learned and ad-hoc features.

2) DL vs. ad-hoc Feature Extraction: Figure 6(a) depicts
the average prediction accuracies (3-fold CV) of SLPs trained
on the outputs of the CNNs compared to the corresponding
accuracies obtained by SLPs trained on the ad-hoc extracted
statistical features. Both CNN topologies yield predictors of
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Fig. 6. Skin Conductance: average accuracy of SLPs trained on statistical
features (Statistical), and features pooled from each of the CNN topologies
(CNNSC

20×11 and CNNSC
80 ). The black bar displayed on each average value

represents the standard error (10 runs).

relaxation with accuracies over 60% (66.07% and 65.38%
for CNNSC

20×11 and CNNSC
80 , respectively), which are sig-

nificantly higher than the models built on statistical features.
Given the performance differences among these networks, it
appears that learned local features could detect aspects of
SC that were more relevant to the prediction of this partic-
ular affective state than the set of ad-hoc statistical features
proposed. Models trained on automatically selected features
further validate this result (see Fig. 6(b)) showing differences
with respect to statistical features above 5%. Furthermore, the
relaxation models trained on selected ad-hoc features, despite
the benefits of FS, yield accuracies lower than the models
trained on the complete sets of learned features. This suggests
that CNNs can extract general information from SC that is
more relevant for affect modeling than statistical features se-
lected specifically for the task. An alternative interpretation is
that the feature space created by CNNs allows backpropagation
to find more general solutions than the greedy-reduced (via
SFS) space of ad-hoc features.

For all other emotions considered, neither the CNNs nor the
ad-hoc statistical features lead to models that can significantly
improve chance prediction (see [67] for random baselines on
this dataset). When feature selection is used (see Fig. 6(b)),
CNN-based models outperform statistical-based models on the
prediction of every affective state with accuracies above 60%
with at least one topology.

Despite the difficulty of predicting complex affective states
based solely on SC, these results suggest that unsupervised
CNNs trained as a stack of denoising auto-encoders form
a promising method to automatically extract features from
this modality, as higher prediction accuracies were achieved
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when compared against a well-defined set of ad-hoc statistical
features. Results also show that there are particular affective
states (relaxation and anxiety, to a lesser degree), in which
DL is able to automatically extract features that are beneficial
for their prediction. On the other hand, it appears that DL
has a lesser effect in predicting some affective states (fun
and excitement) based on the SC signal compared to models
build on the ad-hoc designed features. Prediction accuracies
in those affective states for both type of features (ad-hoc
or CNN-extracted) are rather low, suggesting that SC is not
an appropriate signal for their modeling in this dataset. It
is worth mentioning that earlier studies on this dataset [67]
report higher accuracies on the ad-hoc statistical features than
those reported here. In that study, however, two different signal
components were extracted from the SC signal, leading to
three times the number of features examined in this paper
(i.e. 45 features). Given the results obtained in this paper,
it is anticipated that by using more learned features — for
example, combining CNNs with different input lengths that
would capture information from different time resolutions —
DL can reach and surpass those baseline accuracies.

B. Blood Volume Pulse

Following the same systematic approach for selecting CNN
topology and parameter sets, we present two convolutional
networks for the experiments on the Blood Volume Pulse
(BVP) signal. The CNN architectures used in the experiments
feature the following: 1) one max-pooling layer with non-
overlapping windows of length 30 followed by a convolutional
layer with 5 logistic neurons per patch location and 45 inputs
at each neuron (CNNBV P

1×45 ); and 2) two convolutional layers
with 10 and 5 logistic neurons per patch location, respectively,
and an intermediate max-pooling layer with a window of
length 30. The neurons of each layer contain 30 and 45 inputs,
respectively (CNNBV P

30×45). As in the CNNs used in the SC
experiments, both topologies are topped up with an average-
pooling layer that reduces the length of the outputs from each
of the 5 output neurons down to 3 — i.e. the CNNs output 5
feature maps of length 3 which amounts to 15 features. The
initial pooling layer of the first network collects the maximum
value of the BVP signal every 0.96 seconds, which results
in an approximation of the signal’s upper envelope — that
is a smooth line joining the extremes of the signal’s peaks.
Decrements in this function are directly linked with increments
in heart rate (HR), and further connected with increased
arousal and corresponding affective states (e.g. excitement
and fun [33], [18]). Neurons with 45 inputs were selected to
capture long patterns (i.e. 43.2 seconds) of variation, as sudden
and rapid changes in heart rate were not expected during the
experiment game survey. The second network follows the same
rationale but the first pooling layer — instead of collecting the
maximum of the raw BVP signal — processes the outputs of
10 neurons that analyze signal patches of 0.96 seconds, which
could operate as a beat detector mechanism.

1) Deep Learned Features: Figure 5(b) depicts the 45
connection weights of each neuron in CNNBV P

1×45 which cover
43.2 seconds of the BVP signal’s upper envelope. Given the

negative correlation between the trend of the BVP’s upper
envelope and heart rate, neurons produce output of maximal
values when consecutive decreasing weight values are aligned
with a time window containing a HR increment and con-
secutive increasing weight values with HR decays. On that
basis, the second (N2) and fifth (N5) neurons detect two 10-
second-long periods of HR increments, which are separated by
a HR decay period. The first (N1) and the forth (N4) neuron
detect two overlapping increments on HR, followed by a decay
in N4. The third neuron (N3), on the other hand, detects a
negative trend on HR with a small peak in the middle. This
convolutional layer appears to capture dissimilar local complex
patterns of BVP variation which are, arguably, not available
through common ad-hoc statistical features.

2) DL vs. ad-hoc Feature Extraction: Predictors of excite-
ment and fun trained on features extracted with CNNBV P

1×45
outperformed the ad-hoc feature sets — both the complete
(see Fig. 7(a)) and the automatically selected feature sets
(see Fig. 7(b)). It is worth noting that no other model im-
proved baseline accuracy using all features (see Fig. 7(a)).
In particular, excitement and fun models based on statistical
features achieved performances of 61.1% and 64.3%, respec-
tively, which are significantly lower than the corresponding
accuracies of CNNBV P

1×45 (68.0% and 69.7 %, respectively
— see Fig. 7(b)) and not significantly different from the
accuracies of CNNBV P

1×45 with the complete set of features
(57.3% and 63.0%, respectively — see Fig. 7(a)). Given the
reported links between fun and heart rate [18], this result
suggests that CNNBV P

1×45 effectively extracted HR information
from the BVP signal to predict reported fun. The efficacy of
CNNs is further supported by the results reported in [67]
where SLP predictors of fun trained on statistical features
of the HR signal (in the same dataset examined here) do
not outperform the DL models presented in this paper. For
reported fun and excitement, CNN-based feature extraction
demonstrates a great advantage of extracting affect-relevant
information from BVP bypassing beat detection and heart rate
estimation.

Models built on selected features for relaxation and anxiety
yielded low accuracies around 60%, showing small differences
between learned and ad-hoc features, which suggests that
BVP-based emotional manifestations are not the most appro-
priate predictors for those two states in this dataset. Despite
the challenges that the periodicity of blood volume pulse
generates in affective modeling, CNNs managed to extract
powerful features to predict two affective states, outperforming
the statistical features proposed in the literature and matching
more complex data processing methods used in similar studies
[67].

C. Fusion of SC and BVP

To test the effectiveness of learned features in fused models,
we combined the outputs of the BVP and SC CNN networks
presented earlier into one SLP and compared its performance
against a combination of all ad-hoc BVP and SC features. For
space considerations we only present the combination of the
best performing CNNs trained on each signal individually —
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Fig. 7. Blood Volume Pulse: average accuracy of SLPs trained on statistical
features (Statistical), and features pooled from each of the CNN topologies
(CNNBV P

1×45 and CNNBV P
30×45). The black bar displayed on each average

value represents the standard error (10 runs).

i.e. CNNSC
80 and CNNBV P

1×45 . The fusion of CNNs from both
signals generates models that yield higher prediction accura-
cies than models built on ad-hoc features across all affective
states, using both all features and subsets of selected features
(see Fig. 8). This result further validates the effectiveness
of CNNs for modeling affect from physiological signals, as
models trained on automatically selected learned features from
the two signals yield prediction accuracies around 70-75%.
In all cases but one (i.e. anxiety prediction with SFS) these
performances are significantly higher than the performances
of corresponding models built on commonly used ad-hoc
statistical features.

VI. DISCUSSION

Even though the results obtained are more than encouraging
with respect to the applicability and efficacy of DL for
affective modeling, there are a number of research directions
that should be considered in future research. While the Maze-
Ball game dataset includes key components for affective
modeling and is representative of a typical affective modeling
scenario, our PDL approach needs to be tested on diverse
datasets. The reduced size of the dataset limited the number
of features that could be learned. Currently, deep architectures
are widely used to extract thousands of features from large
datasets, which yields models that outperform other state-of-
the-art classification or regression methods (e.g. [27]). We
expect that the application of DL to model affect in large
physiological datasets would show larger improvements with
respect to statistical features and provide new insights on the
relationship between physiology and affect. Moreover, to be
able to demonstrate robustness of the algorithm, more and
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Fig. 8. Fusion of SC and BVP signals: average accuracy of SLPs trained
on blood volume pulse and skin conductance using statistical features on the
raw signal (Statistical) and features pooled from CNNSC

80 and CNNBV P
1×45

(CNNSC+BV P
80+1×45 ). The black bar displayed on each average value represents

the standard error (10 runs).

dissimilar modalities of user input need to be considered, and
different domains (beyond games) need to be explored. To that
end, different approaches to multimodal fusion in conjunction
with DL need to be investigated. The accuracies obtained
across different affective states and modalities of user input,
however, already provide sufficient evidence that the method
would generalize well in dissimilar domains and modalities.

The paper did not provide a thorough analysis of the impact
of feature selection to the efficiency of DL as the focus
was put on feature extraction. To that end, more feature
selection methods will need to be investigated and compared
to SFS. While ad-hoc feature performances might be improved
with more advanced FS methods, such as genetic-search
based FS [34], the obtained results already show that DL
matches and even beats a rather effective and popular FS
mechanism without the use of feature selection in several
experiments. Although in this paper we have compared DL
to a complete and representative set of ad-hoc features, a
wider set of features could be explored in future work. For
instance, heart rate variability features derived from the Fourier
transformation of BVP (see [33]) could be included in the
comparison. However, it is expected that CNNs would be able
to extract relevant frequency-based features as their successful
application in other domains already demonstrates (e.g. music
sample classification [54]). Furthermore, other automatic fea-
ture extraction methods, such as principal component analysis,
which is common in domains, such as image classification
[68], will be explored for psycho-physiological modeling and
compared to DL in this domain.

Despite the good results reported in this paper on the
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skin conductance and blood volume pulse signals, we expect
that certain well-designed ad-hoc features can still outperform
automatically learned features. Within playing behavioral at-
tributes, for example, the final score of a game — which
is highly correlated to reported fun in games [69] — may
not be captured by convolutional networks, which tend to
find patterns that are invariant with respect to the position
in the signal. Such an ad-hoc feature, however, may carry
information of high predictive power for particular affective
states. We argue that DL is expected to be of limited use in low
resolution signals (e.g. player score over time) which could
generate well-defined feature spaces for affective modeling.

An advantage of ad-hoc extracted statistical features resides
in the simplicity to interpret the physical properties of the
signal as they are usually based on simple statistical metrics.
Therefore, prediction models trained on statistical features can
be analysed with low effort providing insights in affective phe-
nomena. Artificial neural networks have traditionally been con-
sidered as black boxes that oppose their high prediction power
to a more difficult interpretation of what has been learned by
the model. We have shown, however, that appropriate visu-
alization tools can ease the interpretation of neural-network
based features. Moreover, learned features derived from DL
architectures may define data-based extracted patterns, which
could lead to the advancement of our understanding of emotion
manifestations via physiology (and beyond).

Finally, while DL can automatically provide a more com-
plete and appropriate set of features when compared to ad-
hoc feature extraction, parameter tuning is a necessary phase
in (and a limitation of) the training process. This paper
introduced a number of CNN topologies that performed well
on the SC and BVP signals while empirical results showed
that, in general, the performance of the CNN topologies is
not affected significantly by parameter tuning. Future work,
however, would aim to further test the sensitivity of CNN
topologies and parameter sets as well as the generality of the
extracted features across physiological datasets, reducing the
experimentation effort required for future applications of DL
to psychophysiology.

VII. CONCLUSIONS

This paper introduced the application of deep learning (DL)
to the construction of reliable models of affect built on phys-
iological manifestations of emotion. The algorithm proposed
employs a number of convolutional layers that learn to extract
relevant features from the input signals. The algorithm was
tested on two physiological signals (skin conductance and
blood volume pulse) individually and on their fusion for
predicting the reported affective states of relaxation, anxiety,
excitement and fun (given as pairwise preferences). The dataset
is derived from 36 players of a 3D prey/predator game. The
proposed preference deep learning (PDL) approach overcomes
standard ad-hoc feature extraction used in the affective com-
puting literature as it manages to yield models of equal or
significantly higher prediction accuracy across all affective
states examined. The increase in performance is more evident
when automatic feature selection is employed.

Results, in general, suggest that DL methodologies are
highly appropriate for affective modeling and, more impor-
tantly, indicate that ad-hoc feature extraction can be redundant
for physiology-based modeling. Furthermore, in some affective
states examined (e.g. relaxation models built on SC; fun and
excitement models built on BVP; relaxation models built on
fused SC and BVP), DL without feature selection manages
to reach or even outperform the performances of models built
on ad-hoc extracted features which are boosted by automatic
feature selection. These findings showcased the potential of
DL for affective modeling, as both manual feature extraction
and automatic feature selection could be ultimately bypassed.

With small modifications, the methodology proposed can be
applied for affect classification and regression tasks across any
type of input signal. Thus, the method is directly applicable
for affect detection in one-dimensional time-series input sig-
nals such as electroencephalograph (EEG), electromyograph
(EMG) and speech, but also in two-dimensional input signals
such as images [27] (e.g. for facial expression and head pose
analysis). Finally, results suggest that the method is powerful
when fusing different type of input signals and, thus, it is
expected to perform equally well across multiple modalities.
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[47] J. Fürnkranz and E. Hüllermeier, “Preference learning,” Künstliche
Intelligenz, vol. 19, no. 1, pp. 60–61, 2005.

[48] G. N. Yannakakis, “Preference Learning for Affective Modeling,” in
Proceedings of the Int. Conf. on Affective Computing and Intelligent
Interaction (ACII09), Amsterdam, The Netherlands, September 2009.

[49] S. Tognetti, M. Garbarino, A. Bonanno, M. Matteucci, and A. Bonarini,
“Enjoyment recognition from physiological data in a car racing game,”
in Proceedings of the 3rd international workshop on Affective interaction
in natural environments. ACM, 2010, pp. 3–8.

[50] G. N. Yannakakis, J. Hallam, and H. H. Lund, “Entertainment capture
through heart rate activity in physical interactive playgrounds,” User
Modeling and User-Adapted Interaction, vol. 18, no. 1, pp. 207–243,
2008.

[51] G. N. Yannakakis and J. Hallam, “Entertainment modeling through
physiology in physical play,” International Journal of Human-Computer
Studies, vol. 66, no. 10, pp. 741–755, 2008.

[52] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25 (NIPS’2012), 2012.

[53] C. Farabet, C. Couprie, L. Najman, Y. LeCun et al., “Learning hierarchi-
cal features for scene labeling,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 1–15, 2013.

[54] P. Hamel, S. Lemieux, Y. Bengio, and D. Eck, “Temporal pooling
and multiscale learning for automatic annotation and ranking of music
audio,” in In Proceedings of the 12th International Conference on Music
Information Retrieval, 2011.

[55] P. Mirowski, Y. LeCun, D. Madhavan, and R. Kuzniecky, “Comparing
svm and convolutional networks for epileptic seizure prediction from
intracranial eeg,” in Machine Learning for Signal Processing, IEEE
Workshop on. IEEE, 2008, pp. 244–249.

[56] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Int.
Conf. Mach. Learn., 2008, pp. 1096–1103.



IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, VOL. X, NO. X, MONTH 20XX 14

[57] D. Rumelhart, Backpropagation: theory, architectures, and applications.
Lawrence Erlbaum, 1995.

[58] B. Bai, J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi,
O. Chapelle, and K. Weinberger, “Learning to rank with (a lot of) word
features,” Information retrieval, vol. 13, no. 3, pp. 291–314, 2010.

[59] D. Grangier and S. Bengio, “Inferring document similarity from hyper-
links,” in Proceedings of ACM International Conference on Information
and Knowledge Management. ACM, 2005, pp. 359–360.

[60] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description
length, and helmholtz free energy,” in NIPS’1993, 1994.

[61] G. Alain, Y. Bengio, and S. Rifai, “Regularized auto-encoders esti-
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